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Abstract
In terms of the informax principle, and the input–output relationship of the
integrate-and-fire (IF) model, IF neuron learning rules are developed. For
supervised learning and with uniform weight of synapses (the theoretically
tractable case), we show that the derived learning rule is stable and the stable
state is unique. For unsupervised learning, within physiologically reasonable
parameter regions, both long-term potentiation (LTP) and long-term depression
(LTD) could happen when the inhibitory input is weak, but LTD cannot be
observed when inhibitory input is strong enough. When both LTP and LTD
occur, LTD is observable when the output of the postsynaptic neuron is faster
than pre-synaptic inputs, otherwise LTP is observable, as observed in recent
experiments. Learning rules of general cases are also studied and numerical
examples show that the derived learning rule tends to equalize the contribution
of different inputs to the output firing rates.

PACS numbers: 87.18.Sn, 87.19.La, 05.10.Gg, 05.40.−a

1. Introduction

Learning or synaptic plasticity is of vital importance for biological systems [1]. In the present
paper, we develop a learning rule, which is applicable to solving engineering problems [12]
and is based upon (biophysical) models of a cell. The learning rule is derived under the
principle of the maximization of the mutual information of input–output, which has been
proposed and widely used in artificial neuron networks [2,4,18]. Due to recent developments
in modelling single neurons, we know exactly the input–output relationship of some neuron
models such as the integrate-and-fire (IF) model [27] and IF-FHN model [10] etc. Combining
these two approaches together, we are able to develop learning rules relying on the input–output
relationship of a neuron.

We first consider an ideal case where all synaptic strengths are identical. For supervised
learning, by which we mean that the input and output firing rates of a neuron are fixed,
3 http://www.cogs.susx.ac.uk/users/jianfeng
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we prove that there are stable states for the derived learning rule. We also show that the
stable state is unique. We then go further to consider unsupervised learning where the
output firing rate is a function of inputs. We show that both long-term potentiation (LTP)
and long-term depression (LTD) could occur, but LTD tends to be observable only when
the inhibitory input is weak. This is reasonable since with LTD the total input to the
neuron is reduced and therefore it is in a way equivalent to increasing inhibitory inputs.
For the situation where LTP and LTD are both observable, there is a critical point of the
efferent firing rate. Above it, which implies that the efferent firing rate is faster than
input firing rates, LTD happens. Otherwise LTP occurs. This is in general agreement
with recent experimental data [5, 19, 28] which show that when the postsynaptic neuron
fires faster than the pre-synaptic neuron, LTD is observed, otherwise LTP happens. Very
different from the previous applications of the informax principle [4], where the anti-Hebbian
learning rules are found, the derived learning rules are coincident with recent experimental
data.

By a simple combination of the informax principle and the input–output relationship of the
IF model, some interesting and novel conclusions are obtained. Although we confine ourselves
to the IF model, the method developed here can be applied to any neuron provided that we
know its input–output relationship. In conclusion, we expect that the method presented here
is fundamental and could open up many new and interesting problems for further studies.

2. Informax principle

We very briefly review some results on maximizing mutual information between the input and
output of a system and refer the reader to [4] for details. For a given inputX and output Y , the
mutual information M(Y,X) is defined by

M(Y,X) = H(Y)−H(Y |X)
where H(Y) is the entropy of the output Y and H(Y |X) is the conditional entropy. Under the
assumption that the mapping between X and Y is deterministic, then maximizing the mutual
information is reduced to maximizing the entropy H(Y) (see section 8), as pointed out in [4].
Suppose that the output (firing frequency or interspike intervals) y (realization ofY ) of a neuron
is a function of input rate x (realization of X), with synaptic weights w, then the learning rule
under the informax principle is to maximize −〈log f (y)〉 where f (y) is the distribution density
of y. Equivalently we have (equation (6) in [4])

ẇ ∝
(
∂(−〈log f (y)〉)

∂w

)
=

(
∂y

∂x

)−1
∂

∂w

(
∂y

∂x

)
(1)

which is the starting point of our development below.

3. The IF model

Suppose that a cell receives excitatory postsynaptic potentials (EPSPs) at p synapses and
inhibitory postsynaptic potentials (IPSPs) at q inhibitory synapses. When the membrane
potential Vt is between the resting potential Vrest and the threshold Vthresh, it is given by

dVt = −L(Vt − Vrest ) dt + dĪsyn(t) (2)

where L is the decay rate and synaptic inputs

Īsyn(t) =
p∑
i=1

wEi Ei(t)−
q∑
j=1

wIj Ij (t) (3)
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withEi(t), Ii(t) as Poisson processes with rate λEi and λIi respectively,wEi > 0, wIj > 0 being
the magnitude of each EPSP and IPSP. Once Vt crosses Vthresh from below, a spike is generated
and Vt is reset to Vrest . This model is termed the IF model [7, 8, 27].

Here we use the usual approximation to approximate the IF models, or more exactly the
synaptic inputs of the models, i.e. the jump process in equation (3) is replaced by a diffusion
process [27]. We do not check the approximation accuracy since it has been done by many
authors [21, 27].

The input now reads

Ei(t) ∼ λEi t +
√
λEi B

E
i (t)

and similarly

Ii(t) ∼ λIi t +
√
λIi B

I
i (t)

where BEi (t) and BIi (t) are standard Brownian motions. Therefore the IF model can be
approximated by

dvt = −L(vt − Vrest ) dt + dīsyn(t)

where

īsyn(t) =
p∑
i=1

wEi λ
E
i t −

q∑
j=1

wIj λ
I
j t +

p∑
i=1

√
(wEi )

2λEi B
E
i (t)−

q∑
j=1

√
(wIi )

2λIi B
I
j (t). (4)

Since the summation of Brownian motions is again a Brownian motion we can rewrite the
equation above as follows:

īsyn(t) = µt + σB(t) (5)

where B(t) is a standard Brownian motion

µ =
p∑
i=1

λEi w
E
i −

q∑
j=1

λIjw
I
j σ 2 =

p∑
i=1

λEi (w
E
i )

2 +
q∑
j=1

λIj (w
I
j )

2. (6)

In the following we assume that p = q, λIj = rλEj for r ∈ [0, 1]. Therefore when r = 0
the cell receives purely excitatory input and when r = 1 its inputs are exactly balanced. The
interspike interval (ISI) of efferent spikes is

T (r) = inf{t : Vt � Vthresh}.
We only consider the case of rate coding for the reason that a rigorous input–output

relationship of firing rates is known for the IF model. By rate coding, we mean that the
information is carried by the firing rates of a neuron. It is well known in the literature that
the input–output relationship of a neuron takes a sigmoidal form and this is the basis of neural
computations developed in the past decades. The input–output relationship of an IF model
(see figure 1) takes a sigmoidal function as well (not surprising at all), but it depends not only
on the mean of inputs, but also on the variance of inputs. The latter feature enables us to
derive novel learning rules which, to the best of our knowledge, have not been reported in the
literature and exhibit some intriguing phenomena. The importance that a neuron might use
higher-order statistics to compute was recognized early in the literature (see for example [3]).
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Figure 1. A schematic plot of the input and output relationship of the IF
model. w1, w2, . . . , wn are synaptic weights, λ1, λ2, . . . , λn are input rates.

4. Uniform synapse case

We first assume that wEi = wIi = w, i = 1, . . . , p,
∑

i λ
E
i = λ. The assumption of wi = w

is certainly not true and only of theoretical interest. Nevertheless, under the circumstances,
we are able to carry out a rigorous study on the learning dynamics and gain insights into the
general case, discussed in the following sections (see figure 1).

Let 〈T (r)〉 be the mean of the interspike intervals T (r). For the IF model we have [10]

〈T (r)〉 = 2

L

∫ A(Vthresh)

A(Vrest )

g(x) dx (7)

where

g(x) =
[

exp(x2)

∫ x

−∞
exp(−u2) du

]
and

A(V ) = VL− λ(1 − r)w

w
√
Lλ(1 + r)

.

Therefore the output firing rate (Hz) is

γ = s(λ) = 1000

Tref + 〈T (r)〉 (8)

where Tref is the refractory period. The input–output relationship given by equation (8) takes
the form of a sigmoidal function, but is essentially different from the conventional expression
of the input–output relationship. It depends on input not only throughwλwhich appears in the
conventional input–output relationship of a neuron, but also on w

√
λ (the variance term). In

fact in neuroscience it is traditional to exclusively consider (1/〈T 〉)–µ (output firing rate–input
mean) curves. Recently [11] we have emphasized that to gain a complete picture of neuronal
response properties, we should look at response surfaces, i.e. (1/〈T 〉)− (µ, σ ).

Now we apply the informax principle to the input–output relationship of the IF model. To
this end, we have
∂〈T (r)〉
∂λ

= − 2

L
g

(
VthreshL− λ(1 − r)w

w
√
λL(1 + r)

)
w(1 − r)λ + VthreshL

2wλ
√
λ(1 + r)L
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+
2

L
g

(
VrestL− λ(1 − r)w

w
√
λL(1 + r)

)
w(1 − r)λ + VrestL

2wλ
√
λ(1 + r)L

.

From now on we further assume that Vrest = 0 mV the equation above thus becomes

∂〈T (r)〉
∂λ

= − 2

L
g

(
VthreshL− λ(1 − r)w

w
√
λL(1 + r)

)
w(1 − r)λ + VthreshL

2wλ
√
λ(1 + r)L

+
2

L
g

( −λ(1 − r)√
λL(1 + r)

)
(1 − r)

2
√
λ(1 + r)L

.

Note that the second term in the expression above is independent of w, learning independent.
Similarly for ∂〈T (r)〉/∂w we have

∂〈T (r)〉
∂w

= − 2

L
g

(
VthreshL− λ(1 − r)w

w
√
λL(1 + r)

) √
LVthresh

w2
√
λ(1 + r)

.

For simplicity of calculation we introduce two new variables

U = VthreshL− λ(1 − r)w

w
√
λL(1 + r)

V = VthreshL + λ(1 − r)w

w
√
λL(1 + r)

and note the relation that g′(x) = 2xg(x) + 1; we obtain

∂

∂w

(
∂〈T (r)〉
∂λ

)
= 2

L
[(2Ug(U) + 1)V + g(U)]

Vthresh
√
L

2w2λ
√
λ(1 + r)

.

According to equation (1) define

l(w) =
(
∂γ

∂λ

)−1
∂

∂w

(
∂γ

∂λ

)
; (9)

we have

l(w) = −2(∂〈T (r)〉/∂w)∂〈T (r)〉/∂λ + (∂/∂w)
(
∂〈T (r)〉/∂λ) · (Tref + 〈T (r)〉)

(Tref + 〈T (r)〉) · ∂〈T (r)〉/∂λ

= − γ ∂〈T (r)〉/∂w
500

+
(∂/∂w)

(
∂〈T (r)〉/∂λ)

∂〈T (r)〉/∂λ (10)

= [(2Ug(U) + 1)V + g(U)]Vthresh
√
L/w2λ

√
λ(1 + r)

−g(U)V + g
( − λ(1 − r)/

√
λL(1 + r)

)
(1 − r)/

√
λ(1 + r)L

+
Vthresh

250
√
(1 + r)L

γg(U)

w2
√
λ
. (11)

Looking at the second term in the learning rule above (equation (11)), we see that it
gives us an anti-Hebb learning rule, as found in terms of the conventional input–output
neuron relationship. Note that the anti-Hebb learning rule developed here takes the form
of output/input rather than −(output) · (input). We shall see the implication of the form
later on.

We are particularly interested in two cases: r = 1 (exactly balanced inputs) and r = 0
(purely excitatory inputs). These two cases have been intensively studied in the literature in
recent years. A biological neuron system is composed of excitatory and inhibitory neurons. A
recent hypothesis [24] on single neuron modelling is that a neuron receives exactly balanced
excitatory and inhibitory inputs, namely r = 1. With exactly balanced inputs, it is observed
that the neuronal output is in general more irregular than that with purely excitatory inputs.
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• Exactly balanced case: r = 1. The learning rule of equation (11) turns out to be

l(w) = Vthresh

250
√

2

γg(U)

w2
√
Lλ

−
[

2U +
1

g(U)
+

1

V

]
Vthresh

√
L

w2λ
√

2λ

= −
[

2
VthreshL

w
√

2λL
+

(
g

(
VthreshL

w
√

2λL

))−1

+
w

√
2λL

VthreshL

]
Vthresh

√
L

w2λ
√

2λ

+
Vthresh

250
√

2w2
√
L
g

(
VthreshL

w
√

2λL

)
γ√
λ
. (12)

The first term is negative and the second is positive, depending both on inputs and outputs.
• Purely excitatory input case: r = 0.

l(w) = [(2Ug(U) + 1)V + g(U)]Vthresh
√
L/w2λ

√
λ

−g(U)V + g
(
−λ/√λL

)
/
√
λL

+
Vthresh

250

γg(U)

w2
√
Lλ
. (13)

In order to understand the behaviour of l(w), let us have a look of the case of r = 1. When
w is small, the dominant term in equation (12) is

g

(
VthreshL

w
√

2λL

)
∼ exp

[
VthreshL

w
√

2λL

]2

which rapidly diverges to positive infinity. Hence when the weight is small, it increases rapidly.
When w is large enough,

g

(
VthreshL

w
√

2λL

)
∼ exp

[
VthreshL

w
√

2λL

]2

tends to a finite constant and the leading term is

−w
√

2λL

VthreshL

Vthresh
√
L

w2λ
√

2λ

which implies that l(w) is negative and tends to zero when w is large enough (see figure 2).
The conclusion above is true for the general case of r ∈ [0, 1]. A simple implication of
the observation above is that the derived learning rule is always stable and the stable state is
positive. The learning rule of equation (11) automatically prevents the weight from changing
its sign.

Theorem 1. The derived learning rule is stable and the weight does not change its sign.
Furthermore, the stable state is unique and is the solution of the following equation:[

2U +
1

g(U)

]
V + 1 = γ λ

250L

[
g(U)V − g

( −λ(1 − r)√
λL(1 + r)

)
(1 − r)√
λ(1 + r)L

]
. (14)

We postpone the proof of the uniqueness to the appendix; equation (14) is directly from
equation (11).

A comparison between the exactly balanced and purely excitatory input case is
illuminating, as shown in figure 2. For fixed input rates, the stable weight is an increasing
function of r . This is simply coincident with our intuition: the larger r , the weaker the mean
input and so the larger the weight required. For the same reason the stable weight is also a
decreasing function of L. Furthermore the learning rule is not symmetric: the weight tends
to stay at a large value rather than a small value. The assumption that a neuron receives
an exactly balanced input is interesting and is currently a hot topic both in theory and in
experiments [24, 25]. From figure 2, r = 1 we could also see that in this case the stable
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Figure 2. l(w) versus w for r = 0, r = 0.5 and r = 1 with
λ = 10 000 Hz and γ = 10 Hz. l(w) is first a decreasing function
of w and then increasingly approaches zero. The stable point
(intersection with 0) is stable and unique.

state of the weight is quite high. It is reported in the literature that the magnitude of EPSP is
around 0.5 mV with a maximum of 2 mV [24].

The purpose of a learning rule is to find a set of weights w which could produce the given
input and output firing rates. Does the learning rule presented here achieve the goal? From
numerical results in the literature [9], we conclude that for the parameters given in figure 2
and w > 0.5, γ will be around 10 Hz, after adding an appropriate refractory period.
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5. LTP versus LTD

In the previous section we considered the case of learning with fixed input and output firing
rates. This is supervised learning. In this section we consider unsupervised learning. There is
a large body of literature devoted to the topic, both theoretically and experimentally. Basically
it is found that with a slow firing input, the synapse will gradually die away, but with a strong
firing input, the synaptic weight will gradually increase.

For our purpose we rewrite the learning rule equation (11) as follows:

l(w) = λ+(γ, γm)

where γm is the point with the property that

+(γm, γm) = 0.

Now we fix input rates λ and consider the behaviour of +(γ, γm). Figure 3 clearly shows that
when r = 0 and γ < 59 Hz, LTP occurs, i.e. the weight increases its value. However when
γ > 59 Hz LTD happens, i.e. the weight decreases its value. The phenomenon we observe
here is of extreme interest. From a purely theoretical approach we demonstrate that both LTP
and LTD exist. Remembering that the summation of Poisson processes is again a Poisson
process, we therefore could let λi = γm, i.e. p = λ/γm. We then have the following scenario.
When the output firing rate is higher than the input firing rate, LTD happens, and when the
output firing rate is lower than the input firing rate, LTP occurs. This learning also reminds us
of the well known Bienenstock, Cooper and Munro (BCM) learning rule [15]. Quantitatively
the BCM learning rule and equation (11) have similar behaviour: when the output firing rate
is fast the LTP is introduced and otherwise the LTD happens.

If we suppose that λ and γ are instantaneous firing rates, then the results presented above
are also coincident with recent experiments. Basically, figure 3 (r = 0) tells us that when
the postsynaptic neuron fires a spike later than its pre-synaptic neuron, the synaptic strength
increases; otherwise it decreases. In experiments on neocortical slices [19], hippocampal
cells [5] in culture and in vivo studies of tadpole tectum [28], LTP occurs if pre-synaptic action
potentials preceded post-synaptic firing by no more than about 50 ms. If pre-synaptic spikes
follow post-synaptic action potentials, LTD rather than LTD is observed. Figure 4 shows l(w)
versus 1000/(input ISI) − 1000/(output ISI) with a fixed input ISI = 59 Hz (see for example,
figure 1 in [6] for a comparison).

In recent years, there have been many research activities devoted to the topic of learning
in time domains [13,14]. In most of the learning rules used for theoretical study, the updating
of dynamics is according to an ad hoc relationship [16,25]. Our results presented here provide
us with a quantitative rule which shows both LTP and LTD.

Finally we want to emphasize that from figure 3 we know that LTD is observable only when
a neuron receives relatively weak inhibitory inputs. If there are strong inhibitory inputs present,
then only LTP is observed. This seems a reasonable phenomenon and we thus predicate that
in a real neuronal system a similar situation could be true.

For the situations we considered in the previous two sections, an essential shortcoming
of derived learning rules is the requirement of synchronously updating weights. In the next
section, we propose an asynchronous learning rule (see [2, 17]).

6. General case

To overcome the shortcoming mentioned in the previous section, here we consider a local
learning rule under the assumption that the ith synapse is capable of detecting its local field of
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Figure 3. Output frequency is obtained by adding a refractory of 10 ms,L = 1/20, λ = 10 000 Hz.

mean µi = ∑
j �=i wjλj and variance σ 2

i = ∑
j �=i w

2
j λj of inputs. Under this assumption, we

can then maximize the local entropy, as developed below. In fact this formulation also allows
the systems to update asynchronously, rather than synchronously, as in most learning rules
derived under the informax principle.

Remember that the mean firing time is given by

〈T (r)〉 = 2

L

∫ B(Vthresh)

B(Vrest )

g(x) dx (15)



2388 J Feng et al

− 40 − 30 − 20 − 10 0 10 20
− 2

0

2

4

6

8

1000/(Output ISI) – 1000/(input ISI)

l(w
)

Figure 4. l(w) versus 1000/(input ISI) − 1000/
(output ISI) with r = 0 (see figure 3).

where

B(V ) = VL− (w1λ1 + µ1)(1 − r)√
(w2

1λ1 + σ 2
1 )L(1 + r)

.

Defining

.2
1 = (w2

1λ1 + σ 2
1 )L(1 + r)

/1 = (w1λ1 + µ1)(1 − r)

and

ξ(x) = 2w1(1 − r).2
1 + w2

1L(1 + r)(xL−/1)

2.3
1

η(x) = λ1(1 − r).2
1 + (xL−/1)w1λ1L(1 + r)

.3
1

ζ(x) = 2(1 − r).2
1 + 3w2

1λ1L(1 − r2) + 2w1L(1 + r)(xL−/1)

2.3
1

−3w1λ1L(1 + r)[2w1(1 − r).2
1 + w2

1L(1 + r)(xL−/1)]

2.5
1

we arrive at

∂〈T (r)〉
∂λ1

= − 2

L
g

(
VthreshL−/1

.1

)
ξ(Vthresh) +

2

L
g

(
−/1

.1

)
ξ(0)

∂〈T (r)〉
∂w1

= − 2

L
g

(
VthreshL−/1

.1

)
η(Vthresh) +

2

L
g

(
−/1

.1

)
η(0)

(16)

and

∂

∂w1

(
∂〈T (r)〉
∂λ1

)
= − 2

L
g

(
VthreshL−/1

.1

)
ζ(Vthresh)

+
2

L

[
2g

(
VthreshL−/1

.1

)
VthreshL−/1

.1
+ 1

]
ξ(Vthresh)η(Vthresh)

+
2

L
g

(−/1

.1

)
ζ(0)− 2

L

[
2g

(−/1

.1

) −/1

.1
+ 1

]
ξ(0)η(0). (17)
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When /1 = w1λ1(1 − r) and .2
1 = w2

1λ1(1 + r) equations (16) and (17) are simply reduced
to the corresponding equations in the previous subsection with w = w1, λ = λ1. Combining
equations (16), (17) with (10), we obtain a novel learning rule based upon the IF model.

The learning rule presented here is too complex to be explored theoretically; nevertheless,
we could simulate it numerically, as presented in the next section.

7. Numerical results

To see the effect of the learning rule presented in the previous section, we simulate the learning
rule with the following parameters: p = 500, γ = 20 Hz, λi = 30 Hz for i = 1, . . . , 250,
λi = 10 Hz for i = 250, . . . , 500, r ∈ [0, 1] and L = 1/20. The initial weights are random
variables uniformly distributed in [0, 1] and the step size is 0.0001.

Figure 5 shows the results after ten and 2000 steps of learning. After ten steps of
learning we see that weights are almost uniformly distributed within [0, 1]. Nevertheless,
after 2000 steps of learning, the picture is then changed. For r = 0 all weights are now greater
than 0.5. The mean and standard variation of the first 250 weights are 0.826 409 and 0.166 225
respectively; those for the second 250 weights are 0.806 036 and 0.152 571. Hence there is
a small difference between the first 250 weights (receiving stronger inputs) and the second
250 weights. The mean and standard variation of the total 500 synapses are 0.816 222 and
0.159 869. Having another ten steps of learning still increases the weight, but very slightly
(with total mean and standard variation of 0.817 37 and 0.159 63). A similar phenomenon is
observed for r = 1, although now the weights converge to a higher value but a small standard
deviation (with a mean and standard deviation of 1.070 18 and 0.128 412).

Now we simulate the learning rule of unsupervised learning (figure 6). The most interesting
thing to note is that the weights are no longer uniform when r = 0. For neurons with weaker
inputs, their weights are greater than those with stronger inputs. In other words, the derived
learning rule here assigns strong weights to weak inputs and therefore equalizes their
contribution to the output firing rates. Another general feature is that after learning, the
range of weights is much narrower than before learning. Again it equalizes the contribution
of different synaptic inputs to the output.

8. Discussion

We have presented a theoretical approach to derive novel learning rules based upon spiking
neurons. In particular, for the IF model and both the supervised learning and unsupervised
learning, we have proved that when the synapses are uniform, the learning rule obtained under
the informax principle is stable. We have also demonstrated that the stable state is unique. For
unsupervised learning, we conclude that when the inhibitory input is weak both LTP and LTD
are observable. Most interestingly, the derived learning rule quantitatively agrees with recently
experimental data. For the general case, supervised learning and unsupervised learning have
been investigated and numerical results are included.

The approach presented here is quite general. In principle, once we know the input–output
relationship of a neuron, we could obtain the learning rule of the neuron. As we have mentioned
in the introduction, we have accumulated many results on the input–output relationship of a
single neuron, for example on the IF-FHN model [10].

All results presented here are closer to a computational neuroscience approach, rather than
solving practical problems. We shall present the application of learning rules to practical tasks
elsewhere [12].
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Figure 5. Synaptic weights after various steps of iteration for r = 0 and 1.

One of the drawbacks of the current work is that we focus only on the rate coding
assumption, although it remains a widely accepted hypothesis in neuroscience. It would be
very interesting to carry out a similar study for the time coding assumption [13]. The essential
difficulty in carrying out such a study lies in the fact that it is in general not easy to obtain
an analytical input–output relationship of the ISI distribution. In fact, despite many years of
research endeavours, we know that such a formula is lacking [10]. For the IF-FHN model [10],
we have demonstrated that Kramer’s formula [22] gives a reasonable approximation to the
distribution of interspike intervals. Hence it is possible to apply the ideas in the current
paper to the IF-FHN model, under the time coding assumption. It would also be intriguing to
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Figure 6. Synaptic weights after various steps of iteration for r = 0 and 1.

consider the case of correlated inputs, which is currently intensively investigated [10, 23, 26].
Another closely related issue is that the entropy maximization rather than a genuine information
maximization is applied, as pointed out in section 2. If we simply assume that Y = G(X)+N
(see section 2), whereG is an invertible transformation andN is additive noise on the outputs,
for the IF model we have G = 〈T (r)〉. In this case we see that [20] H(Y |X) = H(N)

independent of w. Hence maximizing the mutual information is equivalent to maximizing the
entropy. Nevertheless, in general changing weights and the ratio between inhibitory inputs
and excitatory inputs will both lead to a change of the output distribution of the interspike
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Figure A.1. g(x)I{g(x)<1010} + 1010I{g(x)�1010} versus

x (dotted line), and 1010I{x�4.3} versus x (thick vertical
line).

intervals (see for example, [10]) and therefore H(Y |X) depends on w. To develop an exact
learning rule based upon the information maximization then requires an exact expression of
the distribution of the interspike intervals.
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Appendix

We prove the remaining conclusions in theorem 1. As before, we only consider the case of
r = 1. The general case can be treated similarly. We first check that there is only one point
of w > 0 at which l′(w) = 0. Since we are only interested in the roots of l′(w) = 0, we only
need to consider

l̄(w) = −
[

2
c

w
+

(
g

( c
w

))−1
+
w

c

] √
L

w2λ
+

γ

250w2
√
L
g

( c
w

)

= −
[

2
c

w
+

(
g

( c
w

))−1
+
w

c

] √
L

w2λ
+

4

w2
√
L(Tref + 〈T (1)〉)g

( c
w

)
(18)

where VthreshL/
√

2λL = c. The derivative of l̄(w) is then given by

2
√
Lg(c/w)/λw3 + g′(c/w)c

√
L/w4λ

g2(c/w)
+

6c
√
L

w4λ
+

√
L

cλw2

−4g′(c/w)c
√
L(Tref + 〈T (1)〉) + 4g(c/w)[2w

√
L(Tref + 〈T (1)〉)− c

√
Lg(c/w)]

w4L(Tref + 〈T (1)〉)2 .

(19)

A key observation (see figure A.1) in our proof is that we can further approximate g by

g(x) ∼ cI{x�4.3} + ∞I{x�4.3}
where IA(x) = 1 if x ∈ A and 0 otherwise, i.e. the indicator function. We first consider the
case that

c/w < 4.3.
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In this case we see that the first term in equation (19) is a higher-order term and so we can
simplify equation (19) as

−4g′(c/w)c
√
L(Tref + 〈T (1)〉) + 4g(c/w)[2w

√
L(Tref + 〈T (1)〉)− c

√
Lg(c/w)]

w4L(Tref + 〈T (1)〉)2

+
6c

√
L

w4λ
+

√
L

cλw2
. (20)

Note that

g(c/w)

Tref + 〈T (1)〉 ∼ g′(c/w)
g(c/w)

∼ 2c/w;

we then have

(l̄(w))′ ∼ 6c
√
L

w4λ
+

√
L

cλw2
− 4c

√
L

w4L

(
2c

w

)2

− 8w
√
L

w4L

2c

w
+

4c
√
L

w4L

(
2c

w

)2

.

Therefore the only possible solution of (l̄(w))′ = 0 is

w = Lλ

cλ(16cλ− 4cL)
.

When c/w > 4.3, using the relationship that g(x) ∼ x, we can conclude that there is no
solution for (l̄(w))′ = 0. The results above, together with the fact that l(w) → ∞ as w → 0
and l(w) → 0 with l(w) < 0 as w → ∞, imply the conclusion.
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